Overview of current European geothermal research

David Bruhn

GFZ Potsdam / TU Delft

&

Jan Diederik van Wees TNO / Utrecht University

Universiteit Utrecht

Overview of current European geothermal research - Den Haag, 28th of May, 2015

General representation at EU level

- **EGEC** European Geothermal Energy Council "The voice of the Geothermal Sector in Europe"
- IGA International Geothermal Association European Branch
- **TP RHC** Technology Platform Renewable Heating and Cooling
- IEA-GIA International Energy Agency Geothermal Implementing Agreement
- ERA Net Geothermal Energy
- EERA JPGE Joint Programme on Geothermal Energy in the European Energy Research Alliance

EERA – JPGE Participants

Short Name

Uni Neuchâtel

ENEA

INGV

LNEG

PT Milano

BGS

RWTH Aachen

U Torino

VITO

IFE

U Bari

U Trieste

TU Darmstadt

2010

Short Name	Country		
BRGM	France		
CEGL	Italy		
CNR	Italy		
CNRS	France		
CRES	Greece		
ETH Zürich	Switzerland		
GFZ Potsdam	Germany		
ISES	Netherlands		
ISOR	Iceland		
KIT	Germany		
LIAG	Germany		
TNO	Netherlands		
12 participants			
7 countries			

~250 persons

2012

Swi

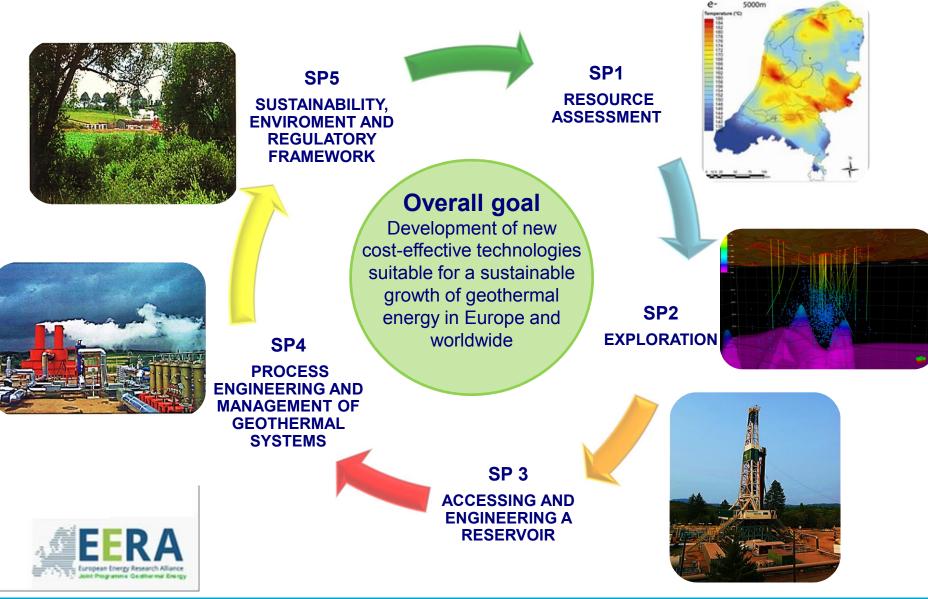
Germany

2013

Country	Short Name	Country
Switzerland	TÜBITAK	Turkey
Italy	OGS	Italy
Italy	PT Torino	Italy
Portugal	IRIS	Norway
Italy	GZ Bochum	Germany
UK	Sintef	Norway
Germany		
Italy	Uni Bergen	Norway
Belgium	Uni Roma Tre	Italy
Norway		
Italy	Curren	t status
Italy		rticipant
	JUT Dal	licidalit

12 countries

~400 persons


S

25 participants

11 countries

~350 persons

EERA-JPGE – Structure and Programme

Research programmes of the EU The Framework Programmes for RTD

- 7 Geothermal projects in FP6
- 4 Geothermal projects in FP7 (one ongoing)

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION

 Current framework programme: Horizon 2020

Recent and Ongoing Projects on Deep Geothermal Energy

• <u>FP7:</u>

- GEISER Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs (finished 2013)
- IMAGE Integrated Methods for Advanced Geothermal Exploration (2013-2017)

<u>Horizon 2020:</u>

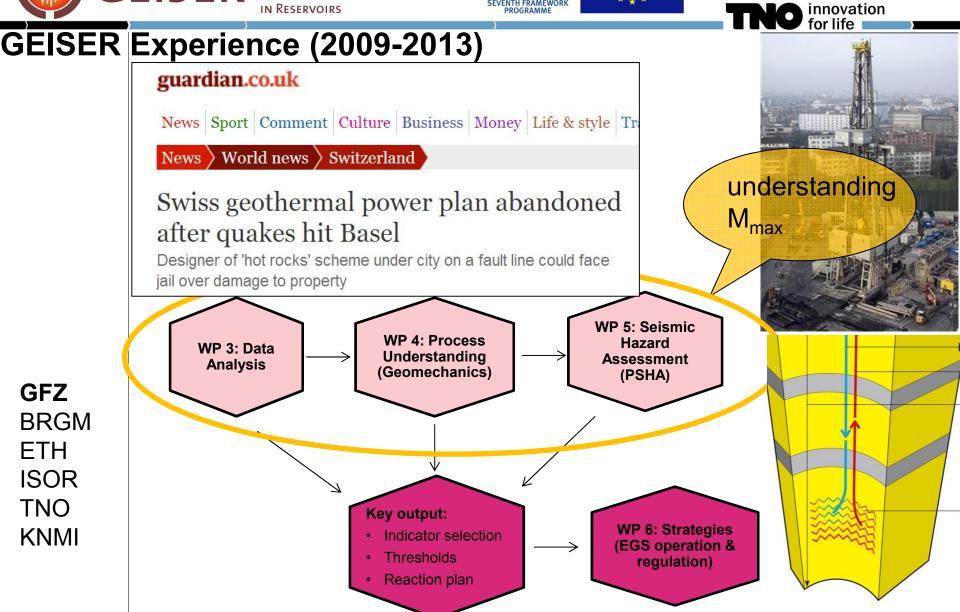
- Call LCE 2 2014 Development of new drilling technologies and concepts for geothermal energy (projects started)
- Call LCE 2 2015 Development of new technologies and concepts for geothermal energy (4 proposals in stage 2 evaluation)
- Call LCE 3 2015 Testing of enhanced geothermal systems in different geological environments (evaluation started)
- <u>IEE:</u> GEOELEC (2011-2013), GEODH (2012-2014)

Geothermal Engineering Integrating Mitigation of Induced SEismicity in Reservoirs

Project Duration: Start: Budget: Partners Co-ordinator

42 months
January 2010
7 Mio € (5.3 Mio € contribution from EC)
13 partners (2 industry) from 7 countries
GFZ Potsdam

GEOTHERMAL ENGINEERING INTEGRATING MITIGATION OF INDUCED SEISMICITY IN RESERVOIRS



– www.geiser-fp7.eu –

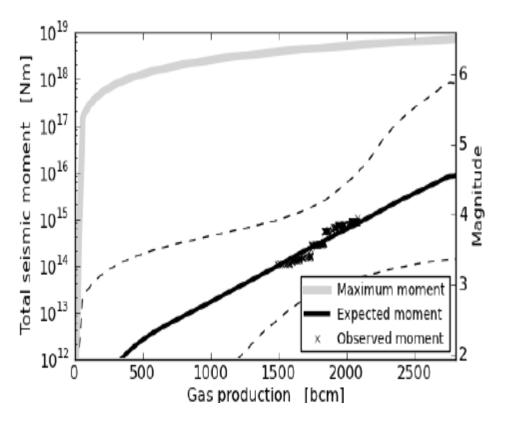
GEOTHERMAL ENGINEERING INTEGRATING MITIGATION OF INDUCED SEISMICITY IN RESERVOIRS

GEISER

http://www.geiser-fp7.fr/ReferenceDocuments/Pages/ReferenceDocuments.aspx

GEISER - Project goals

- Understand processes and mechanics of induced seismicity in geothermal systems
- Develop mitigation strategies
- Provide legal and administrative guidelines for licensing of geothermal power generation


GEOTHERMAL ENGINEERING INTEGRATING MITIGATION OF INDUCED SEISMICITY IN RESERVOIRS

– www.geiser-fp7.eu –

INDUCED SEISMICITY DUE TO GAS DEPLETION

STATUS 2014/2015

Versterking woningen gaswinningsgebied miljardenklus

Economie | Laatst gewijzigd:07-06-2014 11:54 | Martjan Kuit en Joost Zwaga |

Assen - De Nederlandse bouwsector staat voor een opgave van ongekende omvang: 40.000 gebouwen in het Groningse gaswinningsgebied wachten komende jaren op schadeherstel of bouwkundige versterking.

TNO innovation for life

Het gaat om een klus die in het uiterste geval kan oplopen tot maximaal 10 miljard euro. De Nederlandse Aardolie Klik om de foto te vergroten Maatschappij (NAM) maakte de getallen vandaag openbaar

0 1/1

tijdens een druk bezochte consultatiedag in Assen, waar

bouwers, ingenieursbureaus en andere marktpartijen warm werden gemaakt voor 'de Deltawerken 2.0', zoals het project binnen de NAM wordt genoemd. Alleen al tot 2020 wil de aardoliemaatschappij jaarlijks tussen de tweeduizend en vijfduizend gebouwen aanpakken.

Publicatie datum: 07-06-2014 11:54

Kamp beperkt gaswinning Groningen voorlopig en stelt definitieve besluit uit

NAM, technical addendum to production plan, 2014

IMAGE

Integrated Methods for Advanced Geothermal Exploration

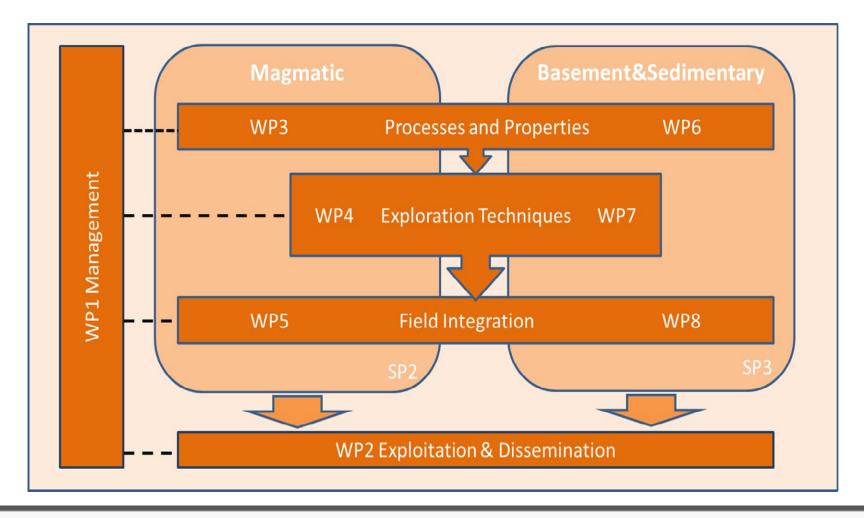
Project Duration: Start: Budget: Partners Co-ordinator

48 months
November 2013
13 Mio € (10.3 Mio € contribution from EC)
19 partners (4 industry) from 7 countries
TNO

Integrated Methods for Advanced Geothermal Exploration

Overview of current European geothermal research - Den Haag, 28th of May, 2015

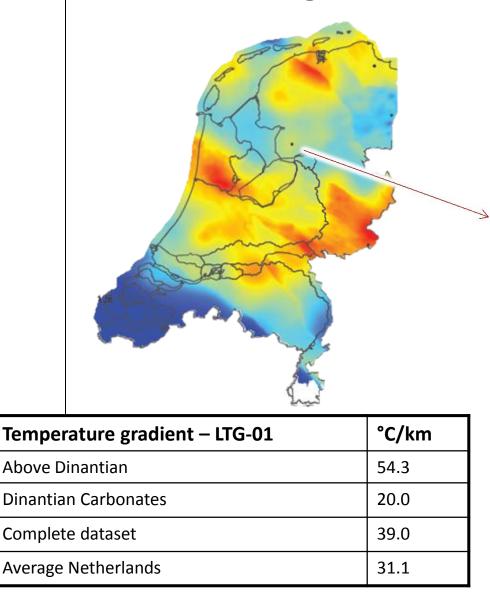
IMAGE: Objectives

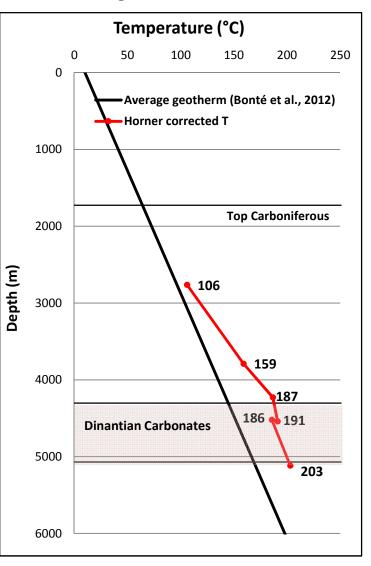

Develop reliable exploration methods for site characterization and well-siting

- Understand processes and parameters for prediction of the critical exploration parameters from continental to local scales
- **Develop** <u>exploration techniques</u> to improve assessment of critical exploration parameters by data-acquisition and processing in
 - Passive and active seismic
 - Electro-Magnetic methods
 - Temperature measurement, geothermometers and tracers
 - Fieldwork and stress measurement
 - To test the developed exploration techniques on selected sites of the industry partners
- Develop and demonstrate integrated sound methods for site characterisation and well-siting in <u>field integration</u>.

Integrated Methods for Advanced Geothermal Exploration

IMAGE: Project Matrix


Geothermal Exploration

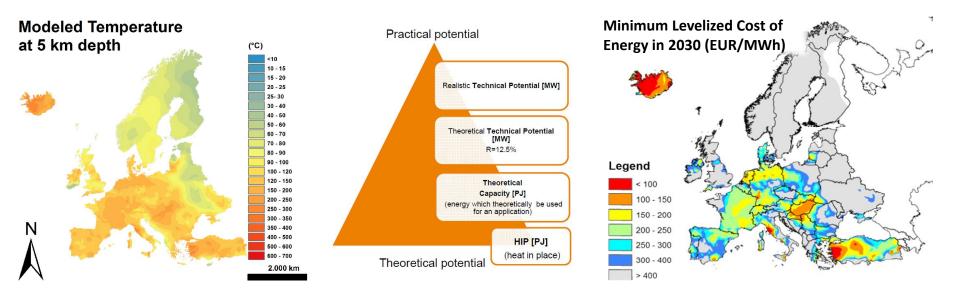

Overview of current European geothermal research - Den Haag, 28th of May, 2015

Luttelgeest thermal anomaly

Van Oversteeg et al., 2014. SGW proc

Why GeoElec?

- set geothermal on the energy agenda of EU Member States
- convince decision-makers about the potential of geothermal electricity in Europe
- stimulate banks and investors in financing geothermal power installations
- attract potential investors such as oil and gas companies and electrical utilities to invest in the geothermal power

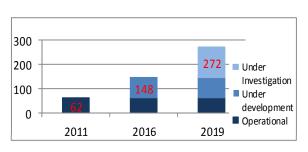

Achievements in brief

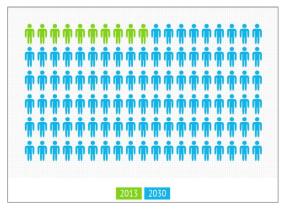
- resource assessment for geothermal electricity in Europe (GeoElec Viewer)
- software to estimate financial viability of geothermal projects
- factsheets with newest numbers on markets, potential, finance, work, regulations, and public acceptance
- training courses for stakeholders from industry and R&D
- promotional workshop in Utrecht with 50 stakeholders

GeoElec Viewer (TNO product)

Geothermal Potential for Electricity Generation in the EU

The GeoElec Viewer presents for the first time a geothermal resource assessment from 1 to 5 km depth.


It enables users to assess estimated potential for geothermal electricity production in 2020, 2030, and 2050 in each of the EU-28 Member States plus Norway, Iceland, Switzerland, and Turkey.


Growing business!

Geothermal will gain more significance in the coming decennia: markets, jobs, grid infrastructure

No. of geothermal power plants in Europe

GE®-ELFC



Positive neutral negative

Jobs in the geothermal sector in Europe

Grid development process (Binda et al. 2012)

BUT: abolish barriers!

Dutch Geothermal challenges adressed in submitted (may 5th) H2020-2015 proposals

NAME	Торіс	TUD/TNO [kEUR]	Dutch operators/comp anies [kEUR]
PRESCO	Corrosion&scaling	500	100
SURE	Radial drilling	600	100
POWER2USE	Heat storage	500	PM
DESTRESS	Soft stimulation demonstration	700	500
GEOWELL	Well completion and integrity	400	300

All numbers are crude estimates