Fast Pyrolysis Bio-Oil Technology and Production

Presentation Studiegroep bijeenkomst Bio Energie Gerhard Muggen December 6th 2018

The presentation herein is intended for presentation purposes and contains confidential information; any unauthorized use, review, transmission, 2

dissemination, distribution or copying is strictly prohibited.

What is pyrolysis?

• Thermal cracking of organic material in the absence of oxygen

- Main Product = Liquid Bio-oil
- Process conditions:
- T = 400 600 °C
- P = atmospheric
- By products:
 - Heat (Steam)
 - Power (Electricity)

Works with most lignocellulosic (non-edible) feedstocks

• Wood chips, sugar cane bagasse, straw, sunflower husk, etc.

Typical Pyrolysis Oil Characteristics	
Composition	$C_2H_5O_2$
Density	1100 - 1200 kg/m³
Heating value	17 - 20 GJ/m ³
Water content	20 - 30 wt.%
• Ash	< 0.1 wt.%
Acidity (pH)	2.5 - 3

Why pyrolysis?

- Decouple biomass resource from location and scale of application
- Works with a variety of biomass feedstocks
- Produces a homogeneous, 2nd generation liquid, that serves as a sustainable alternative to fossil fuels
- Produces bio-oil which is easier to store and transport due to significant volume reduction of solid biomass of about 12 on average
- High overall efficiency of ~ 85%: Conversion of biomass to main & products
- Versatile application: Heat, power and transportation fuels
- Utilize existing fossil fuel infrastructure:
 - Pyrolysis oil provides a viable link between the agriculture and (petro-) chemical industry.
 - Renewable feedstock for petrochemical industry in the production second generation biofuels

Fast Pyrolysis Bio-Oil Process at Empyro

BTL - TechnipFMC collaboration

Rolling out Fast Pyrolysis Bio-Oil technology & commercial production:

- Complete turnkey (EPC) delivery of Fast Pyrolysis Bio-Oil (FPBO) units
- Operational support for commercial production of pyrolysis oil

About TechnipFMC:

- Global footprint with ~37,000 people in 48 Countries
- Technology leader in Hydrogen, Ethylene,
- Refining & Petrochemical projects
- >35 years experience in development,
- design and construction of proprietary FCC
- technology

• About BTG-BTL:

- Founded in 2007, BTL (BTG BioLiquids B.V.) is a biomass technology provider based in The Netherlands.
- Owns the first commercial scale plant in The Netherlands.
- Owns proprietary technology, originally developed at the University of Twente
- BTL owns international patents regarding biomass pyrolysis

Benefits of Technip – BTL FPO Plants

- Plant functions autonomously (stand-alone installation)
- High operating plant efficiency (~ 85%) as no external fuel or power is consumed during normal operation
- High quality Fast Pyrolysis Oil that meets international standards (EN16900:2017/ ASTM D7544)
- Plant can produce enough LP steam to dry biomass from 55%.wt moisture content down to 5%.wt moisture
- At lower biomass moisture content, plant can:
 - Export excess steam to an external local user and/or,
 - Electricity generation via steam turbine, enough for the plant and export excess to an external grid.
- Absence of inert carrier gas recycle, results in minimum downstream equipment size and thus a small plant with **low CAPEX**.
- Modular approach for turnkey delivery of pyrolysis oil plant
 - Shorter delivery time and safer construction
- Plant can be operated and controlled by one operator

Commercial Production

Empyro in Hengelo, the Netherlands

- Electricity 2,200 MWh
 Steam 80,000 tonnes
- CO2- eq. reduction 24,000 tonnes

8 The presentation herein is intended for presentation purposes and contains confidential information; any unauthorized use, review, transmission, dissemination, distribution or copying is strictly prohibited.

EMPYRO – status after 14 quarters of operation (June 2018)

Commissioning

- □ March 2015: First litres of oil; delivery steam to AkzoNobel;
- August 2015: delivery FPBO to FrieslandCampina
- October 2016: Steam turbine commissioned

Production

- □ Scale up RCR very successful;
- **D** 7 operators; One operator to run the plant at night;
- □ ~ 25 million litres produced (3 years);
- □ Runtime and production capacity still (gradually) increasing;
- Oil yield around design value 65 wt%; quality excellent from start
- □ 3.3 tons of oil per hour + 7.4 MW_{th} steam; 650 kW_e Electricity (near 90% heat efficiency)

Economics

- Overall investment within original budget
- □ Actual oil production costs in line with predictions

© 2016

10 The presentation herein is intended for presentation purposes and contains confidential information; any unauthorized use, review, transmission, dissemination, distribution or copying is strictly prohibited.

Pyrolysis Oil Application Industrial Steam Generation at FrieslandCampina

Schematic drawing of Process Steam Boiler at FrieslandCampina

Pyrolysis Oil Application Industrial Steam Generation at FrieslandCampina

Pyrolysis Oil Application

Industrial Steam Generation at FrieslandCampina

Pyrolysis Oil Application Industrial Steam Generation at FrieslandCampina

Picture taken of the inside of the FCD boiler when firing both pyrolysis oil and natural gas

Pyrolysis Oil Application

Industrial Steam Generation at FrieslandCampina

FrieslandCampina is Royal FrieslandCampina is a global dairy company

They are our launching customer for pyrolysis oil

Process steam used in their milk powder process

- Pyrolysis oil off-take agreement concluded for a period of 12 years (equivalent to ~ 200 million litres);
- New natural gas fired steam boiler has been designed suitable to co-fire natural gas and pyrolysis oil (up to 70%) with 100% back-up of natural gas (= guaranteed supply) to produce process steam
- □ Large CO2 reduction when using pyrolysis oil: 89%^{*}
- ❑ As a result of using pyrolysis oil, the immediate carbon emissions for the entire Borculo site will be reduced by 15% and 10 million m³ of natural gas will be saved each year.

Technip Benelux B.V. P.O. Box 86 2700 AB Zoetermeer The Netherlands +31 79 3293600

jacco.kroeze@technipfmc.com www.technipfmc.com BTG BioLiquids B.V. P.O. Box 835 7500 AV Enschede The Netherlands +31 53 486 2287

gerhard.muggen@btg-btl.com www.btg-btl.com

16 The presentation herein is intended for presentation purposes and contains confidential information; any unauthorized use, review, transmission, dissemination, distribution or copying is strictly prohibited.